大陆怎么浏览外国网站
手机怎么浏览外国网站
怎样才能浏览外国网站

Our laboratory is interested in how microorganisms co-evolve with their environment (i.e. how microbial metabolic activities change the environment, and how the environment shapes these activities), with a focus on understanding how electron transfer reactions support energy conservation in the absence of oxygen. We are particularly interested in the physiological strategies taken by bacteria when they are growing slowly–the dominate pace of life on the planet, yet one that is poorly understood. Much of our research involves the study of colorful, redox-active metabolites (RAMs) called phenazines, molecules produced by many different types of bacteria. We are interested in how RAMs help structure microbial populations and communities in various contexts, including biofilm aggregates found within human chronic infections or near the roots of plants. Central to our ability to achieve relevant mechanistic insight is our commitment to characterizing the complex contexts that motivate our reductionist research. Ultimately, we are driven by the long-term goal of contributing new approaches to promoting both human and environmental health.

We are an interdisciplinary lab, and seek help from talented scientists of all types to explore these topics. We are committed to training and enabling young scientists with diverse backgrounds (racial, gender, country of origin, sexual-orientation, ethnicity, etc.) to make discoveries during their time in our laboratory and to prepare for a variety of impactful STEM careers.

Please explore our site and contact us if you are interested. Caltech is an exciting place for microbiology (CEMI) and sustainability research (RSI-EBE Initiative)!

          极狐加速器,ak加速器,十大vp加速器,西游加速器官网入口  黑洞加速器安卓,黑洞加速器官网,黑洞加速度器,黑洞vp  哔咔哔咔漫画网页版入口,哔咔漫画要加速器吗,哔咔专用加速器,哔哔加速器官网  月光vp官网,月光加速器官网,香蕉vqn加速器,月轮加速器  飞狗加速器安全吗,易飞加速器下载,telegeram专用加速器,加速器twitter  黑洞加速,黑洞加速度器永久免费,黑洞vp(永久免费)加速器下载